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Onset of incommensurate interfacial instability in a minimal model of dry friction
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We present a minimal model of dry friction between two incommensurate interfaces sliding at high relative
velocity. Many of the features of the friction force for the full two-dimensional many-body dynamical
system—particularly in the sub-critical velocity regime—are captured by our one-dimensional Einstein model,
where the motion of a typical interfacial atom is constrained to be vertical to the sliding plane. Beyond the
linear response of force versus sliding velocity, the anharmonic Einstein model predicts a doublet resonance
peak, whereupon a catastrophe in the model signals the onset of a plastic deformation mechanism for frictional
sliding, namely, the instability of the interface. Higher velocities than this critical value require a much more
sophisticated description of the production and coalescence of dislocations into a microstructure.
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Sliding friction between two incommensurate interfac
moving in two dimensions~2D! has been studied by large
scale nonequilibrium molecular-dynamics~NEMD! com-
puter simulations involving up to hundreds of thousands
atoms@1#. In these studies, our focus has been on dry,
commensurate interfaces, under ultrahigh vacuum and c
pletely free of contamination. Under these conditions,
static friction is observed, and dynamic sliding occurs at
locities well above 10 m/s with nonzero friction coefficie
@2#. In order to describe the observed behavior in these c
plex systems, we would like to reduce the number of degr
of freedom to a minimal model that captures as many of
essential features as possible. By minimal, we really mea
single particle, with its motion restricted to 1D, namely, ve
tical to the sliding plane. As we will show, this simple pictu
can quantify the tangential force required to obtain a ste
sliding velocity above the quasistatic regime, and even
predict the onset of instability at a critical velocity, whe
many-body plastic deformation mechanisms beco
dominant@3#.

Figure 1 shows the two-dimensional sliding interface. T
lower surface is a triangular lattice of close-packed lines p
allel to the interface, composed of atoms of typeB ~solid
circles! spacedr 0 apart in the horizontal direction; the clos
packed lines are spacedb5A3r 0/2 apart in the vertical di-
rection. The upper surface, composed of atoms of typA
~rightward-pointing open arrows in the direction of slidin!
has close-packed lines perpendicular to the interface, w
the x distance between vertical planes equal tob. We also
takeb to be they distance between the two surfaces in co
tact. As the upper surface slides over the lower at rela
velocity v, we see that a typical interfacialB atom~depicted
as an open circle with a vertical arrow through it! has closest
contact with every otherA particle, as close asb'0.87r 0 and
as far asb1r 0/2'1.37r 0. Thus, the upperA material has a
more open surface structure, which we characterize by
incommensurability ratio ofA:B atoms; in this case
2b/r 0 :15A3:1.

The response of a typicalB atom along the interface is t
execute a quasiperiod-two oscillation in the vertical dire
tion, that is, every other atom along the interface is appro
1063-651X/2003/68~3!/036101~4!/$20.00 68 0361
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mately 180° out of phase with its nearest neighbor. T
leads inexorably to the minimal Einstein model of a partic
driven vertically by the horizontal periodic motion of th
upperA atoms.

The Einstein~single-particle! model @4#, familiar to the
statistical mechanics community, focuses upon a single a
moving in a cage of nearest neighbors~hence, the alternative
name, ‘‘cell model’’!. The Einstein model has been partic
larly useful in the study of crack propagation@5#, where the
imposition of a further restriction to one-dimensional moti
perpendicular to the crack direction has helped to explain
limiting crack velocity@6#. In the friction literature, Einstein
models have been known historically as ‘‘Tomlinson’’ mo
els @7#, where approximate driving forces areusually ob-
tained from a Frenkel-Kontorova~FK! substrate potential
rather than the actual interatomic interactions@8#. When one
sees illustrations of the FK potential, it is natural to imagi
that the atom moves side to side,parallel to the sliding

FIG. 1. Incommensurate interface between two triangular
tices in two dimensions. Atoms of typeA ~open arrow symbol!
move to the right at constant relative sliding velocityv; atoms of
type B ~solid circles! are fixed, except for central Einstein ato
~open circle with vertical arrow!, which is free to move up and
down. Nearest-neighbor spacing isr 0; close-packed rows of atom
are separated byb5A3r 0/2, as isA-B interface.
©2003 The American Physical Society01-1
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direction—a very natural assumption for the quasistatic~ex-
tremely low-velocity! regime—and yet also to assume~sub-
liminally! that the atom moves up and down as well. A
earlier two-dimensional Einstein model was proposed
friction which would have included both vertical and ho
zontal motion, but no analysis of the velocity dependence
the friction force was carried out@9#. When 2D is reduced to
1D, the vertical motion is typically thrown away@10,8# ~ex-
cept for studies of dilatation@11#, which are for macroscopic
plates, rather than a typical interfacial atom!.

In our one-dimensional Einstein model of sliding frictio
we use more realistic interatomic forces than the sinuso
substrate potential. Most importantly, in our model the
om’s motion is constrained to beperpendicularto the sliding
plane, in agreement with what we actually see in movies
large-scale MD simulations. There, the atoms on the de
side of an incommensurate interface bob up and down
loose ties in a dilapidated railroad track as the wheels o
heavy train roll slowly by. As we shall show, our on
dimensional model predicts the onset of a mechanism
dynamical instability of the dry, incommensurate interface
high sliding velocity. With this model, we are able to qua
titatively match the full MD simulations for the resonan
~critical! velocity, which depends crucially on this out-o
plane motion.

The spatial period of the drivingA atom is 2b, so that the
temporal period ist52b/v and the angular frequency o
driving is v52pv/(A3r 0). The coordinates of the Einstei
particle (x[0,y) are measured from its lattice site at th
origin. For simplicity, we imagine that the interaction of th
Einstein atom with its four nearest neighborB atoms is re-
stricted to the pair directly below, and that the effect of
side neighbors is to confine its motion to be in the verticay
direction only. This so-called ‘‘internal’’ interaction betwee
the Einstein particle and its two neighbors below at dista
R5@(y1b)21(r 0/2)2#1/2 is F(R)52w(R), where we
choose w(R)5e0$exp@2a(R/r021)#21%2, the standard
Morse potential with bond energye0, bond lengthr 0, and
repulsive parametera ~the fundamental bond frequency
v0, wheremv0

2r 0
25mc0

252a2e0 andc05r 0v0 is the longi-
tudinal sound velocity!; since the atomic mass ism, we can
choose the unit of time to bet05r 0(m/e0)1/2. ~For a metal
such as copper,r 0'0.3 nm, e0'0.5 eV/atom, andc0
'5 km/s.!

The EinsteinB particle’s ‘‘external’’ interaction with the
upperA atom is described by a purely repulsive short-ran
Morse potentialw(r ), cut off at its minimum ~i.e., r max
5r 0), where thex distance between the EinsteinB atom and
the drivingA atom isx2xA52vt ~the timet is confined to
the interval2t/2<t<t/2 describing the periodic boundar
conditions of the drivingA particle!, the y distance isy
2b, and r 5@(2vt)21(y2b)2#1/2. ~In principle, the cross
potential betweenA andB atoms could be different from th
A-A andB-B interactions, but we will assume here for sim
plicity that the two materials across the interface are ide
cal.! In order to achieve the long-time steady state, hundr
of vibrational periodst are integrated in time to eliminat
initial transients, followed by a steady-state average over
03610
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ditional hundreds oft ~the central-difference integration tim
step is 1/60th of eithert or the fundamental vibrational pe
riod, whichever is less!.

The Newtonian equation of motion of the Einstein partic
includes the effect of dissipation due to the transport of
ergy away from the interface by sound waves and ther
diffusion, which we represent by the viscous damping co
ficient g:

ÿ5
Fy

m
2g ẏ. ~1!

The total forceFy is the sum of the internal and extern
~driving! forces:

Fy52
]F

]y
2

]w

]y
52F8~R!

y1b

R
2w8~r !

y2b

r
. ~2!

The external force in thex direction required to keep the
driving A particle moving at velocityv is

Fx52w8~r !
2vt

r
~3!

which, when averaged over time at the steady state, is
frictional forceFtang to be reported as a function of the slid
ing velocity v.

The total energy of the Einstein particle,E5 1
2 mẏ2

1F(R)1w(r ), is subject to the following rate of change:

Ė5mÿẏ1F8~R!Ṙ1w8~r ! ṙ 5~Fy2gmẏ!ẏ1F8~R!
y1b

R
ẏ

1w8~r !
v2t1~y2b!ẏ

r
52gkT1Fxv, ~4!

wherekT5mẏ2 is the temperature in this one-dimension
externally driven Einstein model. At the steady state,

long-time average of the rate of change in energy isĒ̇50,
which implies that the frictional force is@12#

Ftang5F̄x5
g

v
kT̄. ~5!

While the external forceFx can also be calculated and tim
averaged at the steady state~so-called direct evaluation!, the
second equality~temperature evaluation! in Eq. ~5! is better
behaved, particularly for small values ofFtang , simply be-
cause the temperature is a positive quantity with sma
fluctuations than the nearly zero force.

The equation of motion@Eq. ~1!# for the Einstein particle
can also be written in a familiar form, provided that th
internal interaction for small displacementsy'0 can be ex-
pressed in the harmonic approximation, with the exter
driving approximated by a sinusoidal~in time! force:

ÿ52vy
2y2g ẏ2g0~11cosvt !, ~6!
1-2



s

y

m

r
a-

th
nd
th

st
th
as
ar

-
e
th

by
ex
it

et
is

ic
t

od

hic
ei
-

te
pl
c
is

e is
id

s-
m

s
.
on
3.2.
hat
this

ges

es

of
ng

but
t a

the
tro-
e no

n
ery
t
del
ur
s
at

nd
the

ce
nce

he

e-

f

of

ONSET OF INCOMMENSURATE INTERFACIAL . . . PHYSICAL REVIEW E 68, 036101 ~2003!
where the amplitude of the external drivingg052vy
2ȳss is

determined from the steady-state (t50) displacementȳss

52(22A3)/5520.054~where external and internal force
balance in the harmonic approximation!. The fundamental
frequencyvy for the internal interaction potential is given b

mvy
2r 0

2

e0
53a2. ~7!

For this damped and driven harmonic oscillator, the te
perature can be obtained analytically as@13#

kT̄5
mg0

2

2

v2

~vy
22v2!21g2v2 . ~8!

The temperature exhibits a resonance peak atvcrit ical
5vy , which implies a critical velocity

vcrit ical5
A3

2p
r 0vy . ~9!

The peak amplitude is inversely proportional tog2, and its
width in frequency is proportional tog. ~The underdamped
regime, whereg!vy , is the most physically relevant fo
atomistic systems.! For small velocities, temperature is qu
dratic in velocity and goes likev22 at large velocities.

As a result, in the low-velocity regime,Ftang is linear in
v—so-called linear response to the amplitude of
driving—as well as linear in the damping coefficient, a
quadratic in the amplitude of the cross potential between
two surfaces~i.e., proportional tog0

2). ~Analogous results are
obtained in the linear regime for somewhat more sophi
cated models@14#.! Then there is a resonance peak near
critical velocity and a tailoff for large velocities that goes
v23. When the driving is weak, the system responds ne
adiabatically; likewise, when the velocity is very high com
pared to the resonance condition, the system is unabl
respond well. It is only in the resonance peak regime that
driving is well coupled to the system.

Of course, this harmonic analytic behavior is modified
the anharmonicity of the interactions, both internal and
ternal. The most obvious modification due to anharmonic
is that the resonance peak is split into two~a doublet!, along
with the appearance of overtones of this resonance doubl
multiples of the critical frequency, or velocity. Since th
minimal Einstein model has three degrees of freedom (y, ẏ,
and v), anharmonicity guarantees chaotic behavior, wh
manifests itself as undertones of the resonance double
one-half and one-quarter of the critical velocity, i.e., peri
doubling and quadrupling.

Even more interesting is the possibility of catastrop
behavior, which could herald the breakdown of the Einst
~single-particle! approximation for sufficiently high veloci
ties. The emergence of a correlated~many-particle!
mechanism—or mechanisms—for the response of the sys
could include a dynamic phase transformation, for exam

In Fig. 2, we show the tangential friction force as a fun
tion of sliding velocity. The harmonic approximation
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shown as a dashed line, with a peak velocity whose valu
about 2.85 (v/c050.34). The anharmonic result is the sol
curve, which is rich in complexity.~The comparison of the
direct calculation ofFtang , shown as a dash-dot curve, e
sentially overlays the solid curve, which was computed fro
the steady-state temperature.! The harmonic result agree
with the anharmonic result in the linear response regime

The anharmonic model of incommensurate sliding fricti
shows a dramatic catastrophe for velocities above about
There, the friction coefficient drops to zero, and stays t
way to about 6.4. The resonance becomes so strong in
range of sliding velocities that the Einstein particle mana
to escape upward beyond the periodic drivingA atom. Be-
cause of viscous damping, it reaches an asymptoticy posi-
tion, with zero y velocity; hence, the temperature go
to zero.

Weiss and Elmer simulated a one-dimensional chain
harmonically bonded atoms moving parallel to the slidi
direction over a sinusoidal substrate at constant velocity@8#.
They find a curve that qualitatively resembles our Fig. 2,
with significant differences: First, their resonance occurs a
higher velocity, because the motion is constrained to
horizontal, rather than vertical direction. Second, no catas
phe occurs near their smooth resonance peak, becaus
escape from the cage is possible in side-to-side motion.

The real two-dimensional many-body NEMD simulatio
@1,3# undergoes a dramatic transformation at a velocity v
nearly one-quarter ofvcrit ical , where the first noticeable spli
peak due to chaotic period quadrupling occurs in our mo
system~at v instabil ity;0.6). The main resonance peak in o
model exhibits thisB→A catastrophe at roughly four time
higher velocity than the real many-body simulation, but th
is really no surprise, since the period-doubling a
-quadrupling subresonances are obvious candidates for
onset of interfacial instability, provided that the resonan
exceeds some critical threshold. In fact, the subresona
doublets are amplified in intensity by the push-pull of t
actual repulsive-attractive forces between theA driving at-
oms and theB Einstein atom, as opposed to the purely r

FIG. 2. Frictional force vs sliding velocity for minimal model o
sliding friction ~anharmonicity parametera56 and damping coef-
ficient g51, i.e., underdamped!. Arrow points to harmonic-
approximation resonance peak. Direct anharmonic calculation
force overlays temperature evaluation@Eq. ~5!#.
1-3
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pulsive interaction we have assumed in our simplified mod
It would seem that at the first palpable opportunity~in sliding
velocity!, the many-body system becomes susceptible to
stability, such that eachB atom joins the upper, more openA
surface by popping up into an availableA hole as it moves
by. The NEMD force versus velocity curve shows no sign
subresonances at velocities lower than this first peak, i
cating that the Einstein model period quadrupling is su
cient to instigate the interfacial instability.

This instability of the incommensurate interface is like
orientational phase transformation; that is, the orientation
the upperA atoms becomes more favorable than that of
lower B atoms, and the phase front moves downward a
discernible rate, rather than diffusively. A movie of the fu
many-body dynamical action@3# verifies that our simple Ein-
stein model captures an essential feature of the interfa
instability, namely, thatB atoms pop up into openA positions
at a regular rate, such that theA3:1 interface appears t
move downward at a geometrically predictable veloci
v f ront'v instabil ity /A3'0.57v instabil ity . NEMD simulations
@3# reveal thatv f ront'0.53v instabil ity , which is very close
indeed to this estimate.

Beyond the point of catastrophic interfacial instabili
which occurs at the first period-quadrupling subresona
peak, the Einstein model becomes inappropriate. In
event, this phase-front instability soon gives way to the p
ut
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duction of dislocations, and ultimately, to the formation of
microstructure that facilitates the sliding process at hig
velocities @1,3#. In reality, the friction force in this plastic
regime does not drop to zero, but reaches a peak, and
declines with sliding velocity by a power lawv2b, where
b'3/4. We have recently constructed a plasticity model
plicable to this regime@15#. At even higher sliding velocities
the interfacial region commences to melt, so that the h
monic large-velocity limit is never achieved.

In spite of the severe minimalism of our one-dimension
Einstein model, it is nevertheless able to discern the onse
catastrophic structural events at the incommensurate in
face sliding at high velocities. The up-and-down, out-o
plane bobbing of atoms at the interface is crucial to the
derstanding of this instability, which presages the regime
plastic self-lubrication of clean metal interfaces.
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