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Onset of incommensurate interfacial instability in a minimal model of dry friction
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We present a minimal model of dry friction between two incommensurate interfaces sliding at high relative
velocity. Many of the features of the friction force for the full two-dimensional many-body dynamical
system—particularly in the sub-critical velocity regime—are captured by our one-dimensional Einstein model,
where the motion of a typical interfacial atom is constrained to be vertical to the sliding plane. Beyond the
linear response of force versus sliding velocity, the anharmonic Einstein model predicts a doublet resonance
peak, whereupon a catastrophe in the model signals the onset of a plastic deformation mechanism for frictional
sliding, namely, the instability of the interface. Higher velocities than this critical value require a much more
sophisticated description of the production and coalescence of dislocations into a microstructure.
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Sliding friction between two incommensurate interfacesmately 180° out of phase with its nearest neighbor. This
moving in two dimension$2D) has been studied by large- leads inexorably to the minimal Einstein model of a particle
scale nonequilibrium molecular-dynamiddEMD) com-  driven vertically by the horizontal periodic motion of the
puter simulations involving up to hundreds of thousands ofupperA atoms.
atoms[1]. In these studies, our focus has been on dry, in- The Einstein(single-particl¢ model [4], familiar to the
commensurate interfaces, under ultrahigh vacuum and constatistical mechanics community, focuses upon a single atom
pletely free of contamination. Under these conditions, namoving in a cage of nearest neighbdngnce, the alternative
static friction is observed, and dynamic sliding occurs at vename, “cell model’). The Einstein model has been particu-
locities well above 10 m/s with nonzero friction coefficient larly useful in the study of crack propagatiesl, where the
[2]. In order to describe the observed behavior in these comimposition of a further restriction to one-dimensional motion
plex systems, we would like to reduce the number of degreegerpendicular to the crack direction has helped to explain the
of freedom to a minimal model that captures as many of théimiting crack velocity[6]. In the friction literature, Einstein
essential features as possible. By minimal, we really mean models have been known historically as “Tomlinson” mod-
single particle, with its motion restricted to 1D, namely, ver-els [7], where approximate driving forces atsually ob-
tical to the sliding plane. As we will show, this simple picture tained from a Frenkel-KontorovéFK) substrate potential,
can quantify the tangential force required to obtain a steadyather than the actual interatomic interacti¢8s When one
sliding velocity above the quasistatic regime, and even taees illustrations of the FK potential, it is natural to imagine
predict the onset of instability at a critical velocity, where that the atom moves side to sidearallel to the sliding
many-body plastic deformation mechanisms become
dominant[3]. > > > >

Figure 1 shows the two-dimensional sliding interface. The > > >
lower surface is a triangular lattice of close-packed lines par-
allel to the interface, composed of atoms of typegsolid > > > >
circles spaced o apart in the horizontal direction; the close- > > >
packed lines are spacdrk \3ry/2 apart in the vertical di-
rection. The upper surface, composed of atoms of tpe > > > >
(rightward-pointing open arrows in the direction of sliding A
has close-packed lines perpendicular to the interface, with ° ° $ °
the x distance between vertical planes equabtoNe also
takeb to be they distance between the two surfaces in con-
tact. As the upper surface slides over the lower at relative ) ® ® ® 0
velocity v, we see that a typical interfaciBlatom(depicted
as an open circle with a vertical arrow throughhas closest
contact with every otheA particle, as close as~0.87%, and o o o ®

as far asb+ro/2~1.3%,. Thus, the uppeA material has a FIG. 1. Incommensurate interface between two triangular lat-
more open surfz_;\pe structure, which we chlaract.erlze by thgces in two dimensions. Atoms of typa& (open arrow symbol
incommensurability ratio ofA:B atoms; in this case, move to the right at constant relative sliding velocity atoms of
2b/rg:1=1/3:1. type B (solid circleg are fixed, except for central Einstein atom

The response of a typic8l atom along the interface is to (open circle with vertical arroyy which is free to move up and
execute a quasiperiod-two oscillation in the vertical direc-down. Nearest-neighbor spacingrig close-packed rows of atoms
tion, that is, every other atom along the interface is approxiare separated bly= \/3r /2, as isA-B interface.
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direction—a very natural assumption for the quasist@ic  ditional hundreds of (the central-difference integration time

tremely low-velocity regime—and yet also to assurt®ib-  step is 1/60th of either or the fundamental vibrational pe-

liminally) that the atom moves up and down as well. Anriod, whichever is less

earlier two-dimensional Einstein model was proposed for The Newtonian equation of motion of the Einstein particle

friction which would have included both vertical and hori- includes the effect of dissipation due to the transport of en-

zontal motion, but no analysis of the velocity dependence ofrgy away from the interface by sound waves and thermal

the friction force was carried o{i]. When 2D is reduced to diffusion, which we represent by the viscous damping coef-

1D, the vertical motion is typically thrown awdt0,8] (ex-  ficient y:

cept for studies of dilatatiofiL1], which are for macroscopic

plates, rather than a typical interfacial aom y= E_ Y. (1)

In our one-dimensional Einstein model of sliding friction, m

we use more realistic interatomic forces than the sinusoidal ] )

substrate potential. Most importantly, in our model the at-1n€ total forceF, is the sum of the internal and external

om’s motion is constrained to lEerpendicularto the sliding ~ (driving) forces:

plane, in agreement with what we actually see in movies of
. . +b

large-scale MD simulations. There, the atoms on the denser Fy=————=—®'(R—5—¢'(N—. (2

side of an incommensurate interface bob up and down like ay ay R r

loose ties in a dilapidated railroad track as the wheels of

heavy train roll slowly by. As we shall show, our one-

dimensional model predicts the onset of a mechanism fo

dynamical instability of the dry, incommensurate interface at -

high sliding velocity. With this model, we are able to quan- F,=—o¢'(r)— 3)

titatively match the full MD simulations for the resonance r

(critical) velocity, which depends crucially on this out-of-

plane motion.

f}he external force in the direction required to keep the
griving A particle moving at velocity is

which, when averaged over time at the steady state, is the

The spatial period of the driving atom is 2, so that the frictional forceFtang to be reported as a function of the slid-
temporal period isr=2b/v and the angular frequency of ing velocityv. ) ) ) )
driving is @=2mv/(y3r,). The coordinates of the Einstein ~ The total energy of the Einstein particlés=3my?
particle (x=0y) are measured from its lattice site at the T ®(R)+¢(r), is subject to the following rate of change:
origin. For simplicity, we imagine that the interaction of this
Einstein atom with its four nearest neightd®ratoms is re-
stricted to the pair directly below, and that the effect of its
side neighbors is to confine its motion to be in the vertical
direction only. This so-called “internal” interaction between ,
the Einstein particle and its two neighbors below at distance o)
R=[(y+b)2+(ro/2)?1*? is ®(R)=2¢(R), where we
choose (R)= eo{ex —a(Ro—1)]-1}%, the standard \herekT=mi? is the temperature in this one-dimensional

Morse potential with bond energgp, bond lengthro, and  externally driven Einstein model. At the steady state, the
repulsive parametew (the fundamental bond frequency is =

wo, Wheremw3ri=mc=2a?¢, andcy=rywy is the longi-
tudinal sound velocity since the atomic mass i, we can
choose the unit of time to b =ry(m/ey) Y (For a metal
such as copperfy=~0.3 nm, €,~0.5 eV/atom, andc, Ftang:EX:
~5 km/s)

The EinsteinB particle’s “external” interaction with the

upperA atom is described by a purely repulsive short-range/Vhile the external forcé, can also be calculated and time
Morse potentiale(r), cut off at its minimum(i.e., I may averaged at the steady stase-called direct evaluationthe

=r,), where thex distance between the Einstéiratom and second equali_t;(temperature evaluationn Eq. (5)_ is better
the drivingA atom isx—x,= — vt (the timet is confined to ~ Pehaved, particularly for small values Bfang, Simply be-
the interval — r/2<t< /2 describing the periodic boundary €ause the temperature is a positive quantity with smaller
conditions of the drivingA particle, the y distance isy ~ fuctuations than the nearly zero force. ,

—b, andr=[(—vt)2+(y—b)2]¥2 (In principle, the cross The equation of motiofiEq. (1)] for the Einstein particle
potential betweer andB atoms could be different from the Can also be written in a familiar form, provided that the
A-A andB-B interactions, but we will assume here for sim- Intérnal interaction for small displacements-0 can be ex-
plicity that the two materials across the interface are identiP'€Ssed in the harmonic approximation, with the external
cal) In order to achieve the long-time steady state, hundredd/ving approximated by a sinusoidéh time) force:

of vibrational periodsr are integrated in time to eliminate . ) )

initial transients, followed by a steady-state average over ad- y=—wyy—¥Y—go(1+coswt), (6)

- ' - ' . W ’ y+b
E=myy+®'(R)IR+¢'(r)r=(Fy—ymyy+o (R)Ty
2t+(y—b)y
1—1%—JX=—ymwa, (@)

long-time average of the rate of change in energ§ is0,
which implies that the frictional force igl2]

KT. (5)
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where the amplitude of the external drivigg= —wgyss is 0.5 =
— — anharmonic !

determined from the steady-state=0) displacementy®® —-=- anh. (direct) |

= —(2—/3)/5= —0.054(where external and internal forces 044 === harmonic

balance in the harmonic approximatjormhe fundamental
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For this damped and driven harmonic oscillator, the tem- = 0.1
perature can be obtained analytically[48]
— md w? 0 3 a 5
kT= . 8 sliding velocity (units of ry/t,)
2 (wi—wz)z-i- Y2 w? ®) /o

_ FIG. 2. Frictional force vs sliding velocity for minimal model of
The temperature exhibits a resonance peakwatiical sliding friction (anharmonicity parameter=6 and damping coef-

= wy, Which implies a critical velocity ficient y=1, i.e., underdamped Arrow points to harmonic-
approximation resonance peak. Direct anharmonic calculation of
\/§ force overlays temperature evaluatideg. (5)].
Ucritical :Z lowy . 9)

shown as a dashed line, with a peak velocity whose value is
about 2.85 ¢/cy=0.34). The anharmonic result is the solid
curve, which is rich in complexity(The comparison of the
direct calculation of~,,4, shown as a dash-dot curve, es-
sentially overlays the solid curve, which was computed from
the steady-state temperatyrdhe harmonic result agrees

The peak amplitude is inversely proportional #8, and its
width in frequency is proportional tg. (The underdamped
regime, wherey<w,, is the most physically relevant for
atomistic systemg.For small velocities, temperature is qua-

dratic in velocny and goes I'ke, ®at Igrge veI(.)C|t.|es. ) with the anharmonic result in the linear response regime.

As a result, in the low-velocity regime;ang is linear in The anharmonic model of incommensurate sliding friction
v—so-called linear response to the amplitude of theghgys 4 dramatic catastrophe for velocities above about 3.2.
driving—as well as linear in the damping coefficient, andrpere, the friction coefficient drops to zero, and stays that
quadratic in the amplitude of the cross potential between th?vay to about 6.4. The resonance becomes so strong in this

two surfacesi.e., proportional tay). (Analogous results are range of sliding velocities that the Einstein particle manages
obtained in the linear regime for somewhat more sophistiyq escape upward beyond the periodic drivikgtom. Be-
cated model$14].) Then there is a resonance peak near thggse of viscous damping, it reaches an asymptopiosi-
critical velocity and a tailoff for large velocities that goes astjon, with zeroy velocity; hence, the temperature goes
v~ 3. When the driving is weak, the system responds nearlyy zero.
adiabatically; likewise, when the velocity is very high com-  \weiss and Elmer simulated a one-dimensional chain of
pared to the resonance condition, the system is unable tgarmonically bonded atoms moving parallel to the sliding
respond well. Itis only in the resonance peak regime that th@jrection over a sinusoidal substrate at constant veldgity
driving is well coupled to the system. 3 They find a curve that qualitatively resembles our Fig. 2, but
Of course, this harmonic analytic behavior is modified byt significant differences: First, their resonance occurs at a
the anharmonicity of the interactions, both internal and €Xhigher velocity, because the motion is constrained to the
ternal. The most obvious modification due to anharmonicityhorizontal, rather than vertical direction. Second, no catastro-
is that the resonance peak is split into tveodouble}, along  phe occurs near their smooth resonance peak, because no
with the appearance of overtones of this resonance doublet 85cape from the cage is possible in side-to-side motion.
multiples of the critical frequency, or velocity. Since_ this  The real two-dimensional many-body NEMD simulation
minimal Einstein model has three degrees of freedgmy( [1,3] undergoes a dramatic transformation at a velocity very
andv), anharmonicity guarantees chaotic behavior, whichnearly one-quarter af,i:ica; » Where the first noticeable split
manifests itself as undertones of the resonance doublet aeak due to chaotic period quadrupling occurs in our model
one-half and one-quarter of the critical velocity, i.e., periodsystem(at vjqstapility~ 0-6) . The main resonance peak in our
doubling and quadrupling. model exhibits thiB— A catastrophe at roughly four times
Even more interesting is the possibility of catastrophichigher velocity than the real many-body simulation, but that
behavior, which could herald the breakdown of the Einsteiris really no surprise, since the period-doubling and
(single-particle approximation for sufficiently high veloci- -quadrupling subresonances are obvious candidates for the
ties. The emergence of a correlate@nany-particle¢  onset of interfacial instability, provided that the resonance
mechanism—or mechanisms—for the response of the systegxceeds some critical threshold. In fact, the subresonance
could include a dynamic phase transformation, for exampledoublets are amplified in intensity by the push-pull of the
In Fig. 2, we show the tangential friction force as a func-actual repulsive-attractive forces between thelriving at-
tion of sliding velocity. The harmonic approximation is oms and theB Einstein atom, as opposed to the purely re-
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pulsive interaction we have assumed in our simplified modelduction of dislocations, and ultimately, to the formation of a
It would seem that at the first palpable opporturitysliding  microstructure that facilitates the sliding process at higher
velocity), the many-body system becomes susceptible to invelocities[1,3]. In reality, the friction force in this plastic
stability, such that eacB atom joins the upper, more opén  regime does not drop to zero, but reaches a peak, and then
surface by popping up into an availab¥ehole as it moves declines with sliding velocity by a power law™#, where
by. The NEMD force versus velocity curve shows no sign of g~3/4. We have recently constructed a plasticity model ap-
subresonances at velocities lower than this first peak, indigjicaple to this regimé15]. At even higher sliding velocities,
cating that the Einstein model period quadrupling is suffi-the nterfacial region commences to melt, so that the har-
cient to instigate the interfacial instability. monic large-velocity limit is never achieved.

This instability of the incommensurate interface is like an |, spite of the severe minimalism of our one-dimensional
orientational phase transformation; that is, the orientation Ofinstein model, it is nevertheless able to discern the onset of

the upperA atoms becomes more favorable than that of the a¢astrophic structural events at the incommensurate inter-
lower B atoms, and the phase front moves downward at g,.¢ sliding at high velocities. The up-and-down, out-of-

discernible rate, rather than diffusively. A movie of the full plane bobbing of atoms at the interface is crucial to the un-

many-body dynamical actidrg] verifies that our simple Ein-  yerstanding of this instability, which presages the regime of
stein model captures an essential feature of the '”terfac'fﬂlastic self-lubrication of clean metal interfaces.

instability, namely, thaB atoms pop up into opeA positions
at a regular rate, such that thé8:1 interface appears to
move downward at a geometrically predictable velocity:
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